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Humanmotion prediction refers to forecasting human motion in the future given a past motion sequence,
which has significant applications in human tracking, automatic motion generation, autonomous driving,
human-robotics interaction, etc. Previous works usually used RNN-based methods, focusing on modeling
the temporal dynamics of human motion, which have made great effort on content motions. However, it
is unclear for their performance on stylized motion, which is with more expressive emotions and states of
the human motion. Different styles within the same motion type have similar motion patterns but also
subtle variances. This makes it difficult to be predicted. The main idea of this paper is to learn the spatial
characteristic of stylized motion and combine it with the temporal dynamics to achieve accurate predic-
tion. We adopt a transformer-based style encoder to learn the motion representation in the pose space
and then maps it to the latent space modeled by the constant variance Gaussian mixture model; mean-
while, we use the hierarchical multi-scale RNN as a temporal encoder to capture the temporal dynamics
of human motion; finally, we feed the spatial and temporal features into the prediction decoder to predict
the next frame. Our experiments on the Human 3.6 M and Stylized MotionDatasets demonstrate that our
model has comparable prediction performance with the state-of-the-art motion prediction works on
Human 3.6 M and outperforms previous works on stylized human motion prediction.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Human motion prediction helps us know the human movement
trend in the future and make responses to it accordingly, which has
very significant applications in automatic motion generation,
autonomous driving, human-robotics interaction, target tracking,
and motion planning, etc.

Motion prediction works use traditional statistical modeling
methods at the very beginning to make short predictions of simple
motion types, such as hidden Markov model [3] and Gaussian pro-
cess hidden variable model [25]. The deep neural networks have
activated a lot of works in the field of motion prediction. Among
these works, the Recurrent Neural Network(RNN)-based methods
dominate over other methods due to its well-known characteris-
tics of processing temporal series data. The first RNN-based motion
prediction work is ERD (Encoder-Recurrent-Decoder)[6], which
achieves relatively accurate motion prediction in the short-term.
Unfortunately, it is unable to predict long-term human motion
because of the accumulation of errors. Besides, it can’t handle
multi-type motions either. Following their research, other works
give some new solutions to increase the time range of motion pre-
diction and improve prediction accuracy. Furthermore, they
achieve a breakthrough from single-action prediction to multi-
action prediction [13,18,29,9,4]. These motion prediction works
focus on learning the temporal dynamics of the motion sequence,
which makes them effective for locomotion and multi-type motion
with large motion type variances.

With the increasing application requirements in human-
robotics interaction, VR/AR, and games, human motions are
required to be more expressive to reflect people’s emotions and
states. Factually, when people are moving, they have some seman-
tic information such as emotions (anger, depressed) and states
(childlike, old) instead of swinging hands and feet mechanically,
which is called motion style [27,26,21]. Unlike different motion
types, motion styles are mostly determined by the subtle variances
under the same motion type. And we observe that traditional
motion prediction works mentioned above cannot be easily con-
verted into stylized motion prediction due to the lack of detailed
spatial modeling. We think there are two main challenges in styl-
ized motion prediction: 1. Style feature is semantic information,
which is difficult to extract. And the data distributions of different
stylized motions are both overlapped and different (we will discuss
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this in 5.2.1), leading to ambiguities in prediction; 2. Stylized
motions are structural time series whose temporal and spatial
characteristics are highly coupled and need to be modeled
simultaneously.

In this paper, we propose an auto-regressive network to deal
with stylized human motion prediction. Considering the character-
istics of stylized motion, we simultaneously model the spatial–
temporal characteristics to learn effective low-dimensional repre-
sentations. For spatial modeling, we first adopt transformer as
the style encoder to learn a latent spatial representation. Trans-
former has been proven to be capable of learning the correlation
between different elements of the input vector, which is particu-
larly suitable to learn the interdependence of the relevant joints.
Secondly, we adopt the Gaussian mixture model to learn the data
distribution of stylized motion in latent space. For the accuracy
of prediction, we use a variant called Constant-Variance VAE,
which is proven to be able to increase the stability of VAE network
by fixing the variances of the Gaussian model as a constant. For
temporal modeling, we draw on the idea of hierarchical multi-
scale RNN to capture the complex temporal dynamics of human
motion. Finally, we concatenate the features from spatial modeling
and temporal modeling as the input of a prediction decoder to pre-
dict the pose of the next frame. And the prediction results obtained
in this time step become the input for the next step to achieve
auto-regressive motion prediction. Since the motion style is a kind
of semantic information and is difficult to be expressed by a single
frame, we intuitively use N sequential frames as the input of the
network. In addition, we feed the spatial features into an additional
reconstruction decoder to enhance the learning ability of the style
encoder.

The main contributions of our work can be summarized as
follows:

� 1.We propose a transformer-based style encoder to extract the
style features of stylized motion, which is combined with a
latent space built by constant-variance Gaussian mixture model
to model the subtle differences of different motion styles.

� 2.We propose an auto-regressive network structure to simulta-
neously model the spatial and temporal characteristics of styl-
ized motion, which first achieved accurate predictions of
stylized motion.

� 3.We carry out extensive experiments on Human 3.6 M [12] and
Stylized Motion Datasets [27] both quantitatively and qualita-
tively to demonstrate that the prediction performance of our
method is comparable with the state-of-the-art works on
Human 3.6 M and outperforms previous works on Stylized
Motion Datasets.

2. Related Works

Motion prediction is usually divided into deterministic predic-
tion and probabilistic prediction. When we aim to accurately fore-
cast the trend of human motion in the future, deterministic
prediction is commonly used to get more accurate prediction
results, where RNN-based network structures are frequently used.
When users ask for as many plausible future motions as possible,
probabilistic prediction is a better choice to obtain rich and reason-
able prediction results, which usually uses the network structure
based on VAE or GAN. We will briefly review related works from
the following aspects.

2.1. Deterministic prediction

The purpose of deterministic prediction is to accurately predict
the human sequences with a discriminant model. As we all know,
RNN is superior to other networks in processing temporal series
35
data [22,15], which makes it become the mainstream method of
deterministic prediction. RNN is firstly used in human motion
modeling as a component of the classic structure named ERD
(Encoder-Recurrent-Decoder) in [6], which makes short-term
(560 ms) motion prediction for single-action. For long-termmotion
prediction, SRNN (Structural RNN) [13] uses graph models to
encode the structural characteristics of human motion and suc-
cessfully extends the prediction time range to 1000 ms. However,
RNN-based networks have two obvious drawbacks: 1. There is an
obvious jump between the last frame of the input motion and
the first frame of prediction, which is called first frame discontinu-
ity; 2. The prediction errors will accumulate over time, especially
on the testing set.

The first frame discontinuity problem is solved to some extent
in [18] by directly connecting the input to the output of the net-
work, which is known as residual network. In this way, they model
the transition of velocity instead of poses to alleviate the disconti-
nuity, which is convenient and effective. On the other hand, a ser-
ies of works have been proposed to solve the problem of error
accumulation. Some works aim to force the network to directly
face the unseen input data with errors during the training process,
which is significant to enhance the robustness of the network.
Auto-conditioned RNN [29] achieves this by feeding the output
of the network itself and Ground Truth alternately into the net-
work at every certain number of time steps. Furthermore,
sampling-based loss [18] uses completely the output of the net-
work itself instead of Ground truth as the input of the next frame
to enhance the error processing ability. Another effective way is to
modify the architecture by adding an auto-encoder network with
dropout operation between RNN cells to avoid network overfitting
[9]. Besides this, capturing the temporal dynamics of different time
scales is proved to be helpful to model the temporal dependence of
human motion in [4]. They built a hierarchical multi-scale RNN to
learn the motion dynamics of different time intervals and mixed
them to get more accurate prediction results.

The above RNN-based methods focus on capturing temporal
dynamics of human motion while ignoring the subtle modeling
of pose space. Since stylized motions have similar motion patterns,
which make the variances more subtle to be modeled, these meth-
ods will produce ambiguity when predicting stylized motion.
Therefore, our model not only uses RNN to capture the temporal
dynamics but also uses a transformer-based encoder to extract
the style features. The combination of spatial and temporal charac-
teristics eliminates the ambiguity in the prediction and enables
better modeling of stylized motion.

2.2. Probabilistic prediction

Probabilistic prediction usually relies on generative network
structures, among which VAE [14] and GAN [10] are commonly
used. This type of method builds a probability model on the exist-
ing motion data to predict a variety of results through random
sampling. Using the structure of conditional-VAE [20], Pose-VAE
[24] extracts motion features from videos to generate new
motions. Due to the simple assumption of its latent space distribu-
tion, it is not capable to generate a rich variety of motions. To solve
this problem, a neural network Q is used to learn K mapping func-
tions and then maps the latent space to K different subspaces [28].
Through sampling from the different subspaces, they obtain
diverse human motions. With the great success of Generative
Adversarial Network (GAN) in the computer vision community,
GAN is introduced to human motion prediction to optimize the
quality of the prediction. HP-GAN [1] adds a random variable with
a standard normal distribution into RNN to generate various
motion prediction results. Based on this work, BiHMP-GAN [16]
gives content information to the random variables, which not only
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enables random motion prediction but also makes a deterministic
prediction to a certain extent by controlling random variables. [21]
propose to use meta-learning to generate diverse stylized human
motion. They mainly focus on motion generation and do not carry
on in-depth research on stylized motion prediction.

Probabilistic prediction methods use probability distribution to
model latent space, which can partly model the data distribution of
stylized motion. However, such a scheme increases the diversity of
prediction, leading to the reduction of accuracy. To achieve more
accurate stylized motion prediction, we combine the idea of
Constant-Variance VAE [7] and Gaussian mixture model to model
the subtle variances of different motion styles, which strikes a bal-
ance between diversity and accuracy.

3. Problem Formulation

Let us first formulate the problem to be solved. Traditional
motion prediction, that is, given a past motion sequence
X1:n ¼ x1; x2; . . . ; xnf g, where xi represents a single pose of motion
sequences, to predict a motion sequence of future t time steps
Xnþ1:nþt . This problem can be modeled with a conditional
probability:

p xnþ1; xnþ2; . . . ; xnþtjx1; x2; . . . ; xnð Þ ð1Þ
The difference between stylized motion and ordinary motion is

that stylized motion contains both inherent content information
and style information. Style information expresses people’s emo-
tions and states, such as happiness, angry, depressed, old, sexy,
etc. It is a more refined modeling of human motion that could
make human motion more rich and expressive. Similar to motion
recognition, motion style is semantic information based on the
whole motion sequence and thus is difficult to be described by a
single frame. So we define stylized motion as x1:i ¼ c1:i; Sf g, where
S is the style information of the entire motion sequence, and c1:i is
the content information of each frame, which is specifically
expressed as:

ci ¼ px; py; pz;vx;vy;vz; h1; h2; . . . ; hm
� � ð2Þ

where px; py;pz represent the x; y; z global joint position of the root
joint respectively, and vx;vy; vz represent the x; y; z global joint
velocity of the root joint respectively, hi represents the root joint
angle and local joint angles of other joints represented by an expo-
nential map, and the total dimension is 81. We believe that the
position and velocity information of the root joint contains the tem-
poral dynamics of the motion, while the local joint angles of each
joint contain the spatial characteristics of the pose. To obtain more
accurate prediction results, we use N motion frames to predict the
N + 1th frame instead of directly predicting the motion sequence of
future t time steps, and then iteratively achieve sequence predic-
tion. Therefore, we formalize the stylized motion prediction prob-
lem as the following formula:

p cNþ1jc1; c2; . . . ; cN; Sð Þ ð3Þ
4. Our Method

4.1. Overview

The overview of our network structure is shown in Fig. 1. Firstly,
we use N frames of motion frames as the condition to model the
stylized motion in the spatial dimension and feed the local joint
angles into the spatial transformer to extract the features in the
pose space. Secondly, the dimensionality-reduced stylefeature is
obtained by using the constant variance Gaussian mixture model
to model the latent space of stylized motion. At the same time,
36
we feed the position and velocity of the root joint in the condition
frames into hierarchical multi-scale LSTM to capture the temporal
dynamics of human motion, which is named temporalfeature.
Finally, we combine style and temporal features and feed them
into the prediction decoder to get the prediction result of the
N + 1th frame. In addition, we also feed the stylefeature into the
reconstruction decoder to reconstruct the motion of the Nth frame
to strengthen the feature extraction ability of the style encoder.
And a residual connection is added between input and output.
We will introduce our research methods in detail in the next
chapter.

4.2. Solutions

4.2.1. Spatial modeling of stylized motion
Transformer [23] has achieved fruitful results in the field of Nat-

ural Language Processing, where the self-attention mechanism can
model the interconnection of each word in a sentence, which is
very similar to the relationship between each joint of the human
body. Therefore, we use the transformer as a style encoder to
extract style features in pose space.

We first map the local joint angles of ci to a variable in a D-
dimensional space Ei ¼ e1; e2; . . . ; emf g with a fully connected layer,
and then use 3 different weight matrices WQ ;WK ;WV to compute
Q ;K;V respectively:

Q ¼ EiWQ

K ¼ EiWK

V ¼ EiWV

ð4Þ

Next, we use H different linear transformation matrices to pro-
ject Q ;K;V to different subspaces respectively, and use the pro-
jected values to calculate multi-head attentions:

headi ¼ Attention QWQ
i ;KW

K
i ;VW

V
i

� �
ð5Þ

where:

Attention Q ;K;Vð Þ ¼ softmax
QKTffiffiffiffi
D

p
 !

V ð6Þ

Finally, we concatenate multi-head attentions and use WO to
compute the spatialfeature:

spatialfeature ¼ Concat head1; head2; . . . ;headHð ÞWO ð7Þ
The single motion frame is not enough to describe the style of

the motion sequence, hence the features extracted from a single
motion frame have limited expressive ability. As a consequence,
we feed continuous N motion frames into the style encoder, do
the above operations for each frame, and then concatenate the fea-
tures of the N frames together to get spatialfeature.

After getting the spatialfeature, we map it to a low-dimensional
latent space p Sð Þ through a fully connected layer. The vanilla VAE
[14] uses the standard normal distribution to model latent space,
which makes it difficult to model stylized motion with both cross-
over and discrepant data distribution. As a result of this, we con-
sider using the Gaussian mixture model instead. However, during
the experiment, we find that the effect of motion prediction is
not satisfactory when using the Gaussian mixture model. Since
we want to achieve accurate prediction, and the variances caused
by the randomness of the Gaussian mixture model will be harmful
to the accuracy, it is better to find a model less stochastic. That’s
why we learn from the idea of Constant-Variance VAE [7] and fix
the variance of each Gaussian model in the Gaussian mixture
model to a constant r [8]. The style encoder only needs to learn
the mean li and the weight xi of the M Gaussian models in the



Fig. 1. The overview of our stylized motion prediction network.
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Gaussian mixture model. The latent space can be modeled using
the following formula:

p Sð Þ ¼
X
i

xiN Sjli;r
� � ð8Þ

We additionally added a reconstruction decoder composed of a 3-
layer fully connected layer (288–512-81) and feed the stylefeature
Fs sampled from the latent space into the reconstruction decoder
to enhance the performance of stylefeature.

4.2.2. Capture temporal dynamics
RNN-related networks are suitable for capturing the temporal

dynamics of human motion because of their well-known ability
to handle temporal series data. However, most of the current
works feed motion pose into the network frame by frame, which
is not capable to model the temporal dynamics well because the
transition between adjacent frames is extremely small. Therefore,
we use 2 LSTM networks to form a multi-scale RNN network [5]
and feed the position and velocity of the root joint of the
m;mþ 2;mþ 4; . . .frame into LSTM1 and the
mþ 1;mþ 3;mþ 5; . . .th frame to LSTM2. Then combine the out-
puts of the two LSTM networks and feed them into a fully con-
nected layer to obtain the multi-scale temporalfeature, which is
denoted as Ft . The purpose of this operation is to extract better
temporal features by modeling the dynamics of human motion at
different time scales. After getting Ft and Fs, we concatenate them
together and feed them into the prediction decoder consisting of 3
fully connected layers (256–512-81), and output the prediction
result of the N þ 1th frame.

4.2.3. Training
In our network structure, the RNN cell uses LSTM with a hidden

state dimension of 1024. The dimensions of Fs; Ft ;D;Q ;K and V are
64, 32, 32, 32, 32, 32, respectively. H;M;N, and r are 8, 8, 5, and 0.5
respectively. During training, we input the 1 : N frames, finally out-
put the prediction result of the N þ 1th frame and the reconstruc-
tion result of the Nth frame. During the test, we abandon the
reconstruction encoder and only output the prediction results of
the N þ 1th frame, and then splice it after the Nth frame. On the
next turn, the 2 : N þ 1 frames are used as the input to realize
auto-regressive prediction. The loss functions are as follows:

L ¼ x1LKL þx2Lpre þx3Lrecon þx4Lsmooth ð9Þ
where
37
LKL ¼ k
X
i

lixik2

Lrecon ¼ kXN � eXNk2
Lpre ¼ kXNþ1 � eXNþ1k2

Lsmooth ¼ k XNþ1 � XNð Þ � eXNþ1 � eXN

� �
k2

ð10Þ

where LKL is the KL divergence. Because we set the variance of the
latent space to a constant, there is no variance term in the KL diver-
gence. Lpre and Lsmooth are the loss of the prediction encoder, which
are to ensure the accuracy of the prediction result of the next frame
and the predicted motion as smooth as possible respectively. Lrecon is
the loss of the reconstruction encoder to ensure the accuracy of the
reconstruction result. Thex1;x2;x3;x4 used in the experiment are
0.1, 1, 0.2, and 0.05 respectively. Between the input and output of
the network, we use the residual structure proposed in [18]. At
the same time, we also adopt the training strategy named sched-
uled sampling [2] to enhance the generalization ability of the
network.

5. Experiments

5.1. Datasets

The datasets used in our experiments include Human 3.6 M [12]
and Stylized Motion Datasets [27]. We will introduce these two
datasets as follows:

5.1.1. Human 3.6 M
Human 3.6 M is a large human motion dataset that is mostly

used in the field of motion prediction. They release the data of
15 motion categories from 7 subjects, including walking, running,
smoking, discussion, etc. The frame rate is 50 Hz, and each charac-
ter has 32 joint points. We use the 3D angle data to make the pre-
diction, including the position of the root joint and the joint angles
of all joints.

5.1.2. Stylized Motion Datasets
Stylized Motion Datasets is a stylized motion dataset created by

Xia [27] including 8 motion styles: angry, old, depressed, sexy,
childlike, strutting, proud, neutral, and 5 motion categories: walk-
ing, running, jumping, punching, kicking. The frame rate is 120 Hz,
and each character includes 25 joint points. We used the walking
sequences of the dataset.
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5.2. Results

5.2.1. Stylized Motion Datasets analysis
We use the NPSS proposed in [11] to analyze the difference

between Stylized Motion Datasets and Human 3.6 M. NPSS can
measure the similarity of two sets of motion sequences in the data
distribution degree. We randomly selected two sets of motion from
Human 3.6 M: the single type of motion and multiple types of
motion, each of which containing 100 sequences with a length of
60 frames. Meanwhile, from the walking sequences of the Stylized
Motion Datasets, 100 sequences with the same length are also ran-
domly selected. We divide the obtained 3 sets of movements into
two groups randomly and calculate their NPSS. After repeating
the above steps 10 times, we get the means and variances shown
in Table 1. The smaller the mean, the more similar the extracted
motion patterns are, and the variance means how different the dis-
tribution of the selected sequences are. The results in Table 1 show
that the single type of motions in Human 3.6 M has similar motion
patterns and data distributions because of its low mean and vari-
ance. On the contrary, multiple motion types have obvious differ-
ences in motion patterns and data distributions. The different
styles of the Stylized Motion Datasets are similar in terms of
motion patterns, but the data distribution is more complicated
than the single type motion in Human 3.6 M. This shows that
our analysis and understanding of the Stylized Motion Datasets is
reasonable, and it also explains to some extent that why the exist-
ing works cannot achieve good performance on Stylized Motion
Datasets.
Table 3
MAE Comparison of the long-term prediction of the 4 main motion types on Human
5.2.2. Baseline and implementation details
We compare the previous RNN-based works including ERD [6],

SRNN [13], Seq2Seq [18], TP-RNN [4] on Human 3.6 M and Stylized
Motion Datasets, as well as the zero-velocity baseline proposed in
[18]. For the fairness of the experiment, we convert the pose of
Stylized Motion Datasets to the skeleton of the Human 3.6 M
through motion retargeting [19] and also downsampling the fre-
quency of the two data sets to 25 Hz. At the same time, we adopt
the code that these works publicly release on the Internet. For
Human 3.6 M, we use their pre-trained model. For Stylized Motion
Datasets, we use the experimental settings mentioned in their
papers. We use Nvidia 2080Ti to train our network for a total
150 epochs. The learning rate is initialized to 0.005, and the decay
rate for each epoch is 0.98. The P of scheduled sampling is initial-
ized to 1, and each epoch is reduced by 0.025. The batch size is set
Table 1
The NPSS measurement of Human 3.6 M and Style Walking. ST means single type and
MT means multiple types.

l r

H36M(ST) 0.9090 0.0439
H36M(MT) 2.3146 0.1885

Style Walking 1.1957 0.1014

Table 2
MAE Comparison of the short-term prediction of the 4 main motion types on Human 3.6

Walking Eating

milliseconds 80 160 320 400 80 160 320

ERD 0.93 1.18 1.59 1.78 1.27 1.45 1.66
SRNN 0.81 0.94 1.16 1.30 0.97 1.14 1.35
Seq2seq 0.28 0.49 0.72 0.81 0.23 0.39 0.62
Zero-velocity 0.39 0.68 0.99 1.15 0.27 0.48 0.73
TP-RNN 0.25 0.41 0.58 0.65 0.20 0.33 0.53
Ours 0.28 0.41 0.61 0.66 0.22 0.32 0.57

38
to 32, and the optimizer is Adam. According to the experimental
settings of previous works, our past sequence length is set to 10
frames, and the predicted length is 40 frames.

5.2.3. Evaluations

(1) Comparison on Human 3.6 M: Following previous works,
we make long-term and short-term predictions respectively
on Human 3.6 M. In the experiment, we use the data of subject
5 for testing and the others for training, randomly extract 8 past
sequences for prediction, and then calculate the Euler distance
between the prediction results and Ground Truth as the predic-
tion error. Among them, TP-RNN and our method are action-
agnostic, and the others are for specific types. The experimental
results are shown in Table 2 and Table 3.
Experimental results show that our work is comparable to the
current state-of-the-art method TP-RNN in terms of short-
term and long-term prediction. From 80 ms to 1000 ms, our
prediction results are close to or better than TP-RNN, which
shows that our prediction method is also effective on classic
datasets. It is worth noting that some of our prediction results
are not as good as TP-RNN on Human 3.6 M. According to our
observation, this is reasonable because our model mainly solves
spatial modeling and the RNN structure used in temporal mod-
eling is much simpler than TP-RNN, in the meanwhile, the
sequences of the same motion type in Human 3.6 M have sim-
ilar patterns and relatively less spatial variances, which makes
our style encoder cannot fully play its role. However, with the
help of our style encoder, a simple RNN network structure can
also achieve comparable prediction performance to the state-
of-the-art works on classic datasets.
(2) Comparison on stylized walking: For Stylized Motion Data-
sets, we make short and long term predictions on the Walking
motion of all 7 styles, including angry, old, sexy, childlike, strut-
ting, proud, and depressed. We divide the data into training set,
validation set, and test at 5:1:1, and the rest of the experimental
settings are consistent with the settings of Human 3.6 M.
Because our method and TP-RNN are both action-agnostic and
have better performances than other methods on Human
3.6 M, we only compare our method with TP-RNN here. For
the ablation study, we also compare the prediction results after
M. The best results are shown in bold.

Smoking Discussion

400 80 160 320 400 80 160 320 400

1.80 1.66 1.95 2.35 2.42 2.27 2.47 2.68 2.76
1.46 1.45 1.68 1.94 2.08 1.22 1.49 1.83 1.93
0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09
0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04
0.67 0.26 0.47 0.88 0.90 0.30 0.66 0.96 1.04
0.71 0.28 0.46 0.91 0.93 0.33 0.64 1.01 1.08

3.6 M. The best results are shown in bold.

Walking Eating Smoking Discussion

milliseconds 560 1000 560 1000 560 1000 560 1000

ERD 2.04 2.41 2.35 2.44 3.71 3.80 2.88 2.92
SRNN 1.88 2.13 2.28 2.55 3.30 3.25 2.40 2.45

Seq2seq 0.88 0.95 0.96 1.35 1.24 1.85 1.42 1.78
Zero-velocity 1.35 1.32 1.04 1.38 1.02 1.69 1.41 1.96

TP-RNN 0.75 0.77 0.85 1.16 1.01 1.66 1.39 1.78
Ours 0.78 0.82 0.88 1.15 0.99 1.71 1.42 1.82
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removing the style encoder. The experimental results are
shown in Table 4.
From the results in Table 4, we can discover that our method
performs better than TP-RNN on Stylized Motion Datasets in
almost all time steps, which shows the effectiveness of our
method for stylized motion prediction. There are three experi-
mental results worth noting:

(a) In the 160–560 ms interval, our method performs better
than TP-RNN in most styles while the performance of TP-
RNN in the same time period is superior to ours on
Human3.6 M. The reason for this phenomenon is that TP-
RNN is a deterministic prediction method that focuses on
capturing the temporal dynamics. Resulting in their better
prediction effects on datasets containing single motion type
and multiple motion types with large variances like Human
3.6 M. On the other hand, our method works on the subtle
modeling of the spatial structure to achieve better prediction
of stylized motion with both overlapping and different data
distribution.
(b) The prediction result of our method at the 80 ms is worse
than TP-RNN in most styles. It is reasonable about this
because that TP-RNN uses the velocity as motion representa-
tion of a single frame, which can effectively enhance the
smoothness of temporal modeling, making their initial pre-
diction effect better than our method. However, the velocity
mainly expresses the trend of motion over time, which is not
as helpful as position and angle for spatial characteristics
modeling. We try to add joint velocity into our motion rep-
resentation during our experiment, and it turns out
unsatisfactory.
(c) Another time step worth paying attention to is 1000 ms,
where our method has a much better prediction effect than
TP-RNN. These results prove that our method can effectively
avoid ambiguity in the prediction, which leads to better per-
formances in long-term prediction. This is also the reason
why we focus on modeling spatial characteristics using the
style encoder.

(3) Qualitative evaluation: We visualize some of the prediction
results of Stylized Motion Datasets for qualitative evaluation. As
with quantitative evaluation, we compared TP-RNN, our
method, and the result of our method after removing the style
encoder. For a more intuitive perspective on the difference
between the predictions and Ground Truth, we draw them in
the same coordinate system. Corresponding to the quantitative
evaluation, we show the results of 80 ms, 160 ms, 320 ms,
400 ms, 560 ms, and 1000 ms. From Fig. 3, we can see that
le 4
E Comparison of 7 motion styles on Stylized Motion Datasets. SE stands for style enco

Angry

illiseconds 80 160 320 400 560 1000 80 160 3

P-RNN 0.21 0.52 0.89 1.74 1.99 2.74 0.33 0.54 0
urs(w/o SE) 0.62 0.74 0.97 1.87 1.89 3.14 0.53 0.78 1
urs 0.32 0.45 0.84 1.64 1.71 1.99 0.31 0.55 0

Childlike

illiseconds 80 160 320 400 560 1000 80 160 3

P-RNN 0.28 0.64 1.15 1.77 1.87 2.36 0.24 0.56 0
urs(w/o SE) 0.59 0.89 1.67 1.99 2.19 3.22 0.36 0.87 1
urs 0.29 0.45 0.89 1.35 1.50 1.80 0.27 0.45 0

Depressed A

illiseconds 80 160 320 400 560 1000 80 160 3
P-RNN 0.25 0.59 0.79 1.02 1.54 2.33 0.27 0.57 0
urs(w/o SE) 0.66 0.85 1.18 1.33 1.86 2.91 0.57 0.81 1
urs 0.33 0.46 0.59 1.11 1.40 1.82 0.31 0.48 0
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the prediction results of TP-RNN and ours (w/o SE) become
worse after 560 ms, and the motion predicted by our method
is the most consistent with Ground Truth, which fully demon-
strates the effectiveness of style encoder + Constant variance
GMM.
(4) Ablation study: At first, we would like to discuss the choice
of N in the experiment. Recall that motion style is a kind of
semantic information expressed by sequences instead of a sin-
gle frame. Therefore, we use N continuous frames as the input
of our network. We try various options of N(from 2 to 6) in
the experiment to find out which is the most effective. For com-
parison, we compute the mean prediction error of all 7 motion
styles with the same setting in 5.2.3. The results are shown in
Fig. 2. According to Fig. 2, when N is relatively small, the input
sequence has insufficient style information for extracting the
style feature. With N gradually increasing, the style information
contained in the input sequence is gradually enriched, thus the
prediction performance becomes better. However, too many
conditional frames increase the chances of overfitting, which
will reduce the prediction effect of the model on the testing
set. After experimental verification, the prediction performance
is best when N = 5, so we finally chose this setting.

To verify the effect of the style component we proposed, we do an
ablation study both quantitatively and qualitatively. First of all, we
remove the whole style encoder to find out whether the accuracy
of the prediction is affected. The results are shown in the fourth
row of Table 4. After removing the style encoder, the prediction
der.The best results are shown in bold.

Old Sexy

20 400 560 1000 80 160 320 400 560 1000

.98 1.42 1.87 2.45 0.24 0.44 0.77 1.31 1.74 1.88

.00 1.78 1.99 2.93 0.45 0.70 0.90 1.45 1.97 2.41

.87 1.67 1.80 1.93 0.28 0.44 0.68 1.44 1.68 1.71

Strutting Proud

20 400 560 1000 80 160 320 400 560 1000

.87 1.53 1.97 2.42 0.32 0.69 0.84 1.33 1.90 2.38

.01 1.97 2.11 2.91 0.78 0.85 1.11 1.55 2.33 3.02

.78 1.47 1.69 1.97 0.34 0.56 0.70 1.15 1.38 1.66

verage of all 7

20 400 560 1000
.90 1.45 1.84 2.38
.12 1.71 0.25 2.93
.76 1.40 1.59 1.83
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accuracy is significantly reduced, which further illustrates the
effectiveness of our method. To further illustrate the significance
of our style encoder, we do a qualitative ablation study by using
an ordinary 3-layer fully connected Encoder + standard Gaussian
distribution instead of our style encoder + Constant Variance
GMM to model the latent space and visualize the latent space
learned by the two methods. The result is shown in the Fig. 4.

Through Fig. 4, it can be confirmed that the data distribution of
Stylized Motion Datasets is actually as we analyzed, that is, there
are overlaps and differences in the data distribution. When we
Fig. 3. Visual comparison of Angry Walking prediction results. The dotted

Fig. 4. We use T-SNE [17] to reduce the dimension of the latent space to 2 dimensions a
the triangles indicate normal speed walking, and the circles indicate fast speed walking. (a
result of style encoder + Consta.nt variance GMM.

40
compare Fig. 4(a) and (b) carefully, we can find that the latent
space data distribution learned by the fully connected Encoder + s-
tandard Gaussian distribution is relatively scattered. The motions
of the same style are not gathered together, and it is impossible
to distinguish between normal speed walking and fast speed walk-
ing. On the contrary, the style encoder + constant variance GMM
model the latent space more concentratedly. We can not only dis-
tinguish the styles more accurately but can also distinguish
between normal speed walking and fast speed walking to a certain
extent.
line in the figure is Ground Truth and the solid line is the prediction.

nd visualize them. The different colors in the figure indicate different motion styles,
) is the result of fully connected encoder + standard Gaussian distribution, (b) is the
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6. Conclusion

In this paper, we firstly analyzed the similarities and differences
between stylized motion and ordinary motions using NPSS. Based
on this observation, we proposed a method that can accurately
predict stylized motion and demonstrated the effectiveness of
our method through a series of experiments. Our model used
transformer as the style encoder to extract stylized features. At
the same time, we use a Gaussian mixture model with constant
variance to model the data distribution of stylized motion in latent
space. Combining the temporal dynamic captured by hierarchical
multi-scale LSTM with style features extracted by style encoder,
we provide a solution to the problem of the lack of detailed spatial
structure modeling of motion in previous works, which led to
ambiguity in prediction. Qualitative and quantitative experiments
show that the predictive effect of our work on the Stylized Motion
Datasets is state-of-the-art.

However, our method also has some limitations. First of all, the
residual network structure does not completely solve the problem
of first frame discontinuity. In the future, we hope to cope with this
problem by estimating the initial hidden state of RNN. Secondly,
the errors of our prediction results can increase significantly with
large time step t due to the inherent randomness of human motion
as well as the accumulation of errors in the prediction process.
Future works may start from these two aspects for more accurate
motion prediction.
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